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ABSTRACT: In Part II of this two-part study, system simulations and experimental
correlations of a Shape Memory Alloy (SMA) based vibration isolation device (briefly
described in Part I) has been presented. This device consists of layers of preconstrained SMA
tubes undergoing pseudoelastic transformations under transverse dynamical loading. In Part
II, detailed description of the prototype vibration isolation device, its experimental setup, and
actual experimental test results are presented. An extensive parametric study has been
conducted on a nonlinear hysteretic dynamical system, representing this vibration isolation
device utilizing a physically based simplified SMA model and a Preisach model (an empirical
model based on system identification) developed in Part I. Both the physically based simplified
SMA model and the modified Preisach model have been utilized to perform experimental
correlations with the results obtained from actual testing of the device. Based on the .
investigations, it has been shown that variable damping and tunable isolation response are
major benefits of SMA pseudoelasticity. Correlation of numerical simulations and
experimental results has shown that large amplitude displacements causing phase transforma-
tions of SMA components present in such a device are necessary for effective reduction in the
transmissibility of such dynamical systems. It has also been shown that SMA-based devices
can overcome performance trade-offs inherent in typical softening spring-damper vibration
isolation systems. In terms of numerically predicting the experimental results, it has been
shown that the Preisach model gave relatively accurate results due to better modeling of the
actual SMA tube behavior. However, for a generic parametric study, the physically based
simplified SMA model has been found to be more useful as it is motivated from the
constitutive response of SMAs and hence, could easily incorporate different changes in system
conditions.

Key Words: shape memory alloys (SMAs), pseudoelasticity, hysteresis, Preisach, system

identification, passive vibration isolation, damping, dynamic system

INTRODUCTION

SHAPE Memory Alloys (SMAs) appear to be viable
candidates for use in the field of vibration isolation
as mentioned in Part I of this two-part paper due to the
nature of the pseudoelastic behavior (Wayman, 1983;
Otsuka and Shimizu, 1986) exhibited when a SMA
material is loaded at temperatures greater than the
austenitic finish temperature.

In work done by Yiu and Regelbrugge (1995),
the behavior of SMA springs designed to act as an
on-orbit soft mount isolation system for a momentum
wheel assembly has been numerically investigated
with the added benefit of precision alignment through
the utilization of the SMA shape-memory effect.
In work done by Feng and Li (1996) some effects of

*Author to whom correspondence should be addressed.
E-mail: dlagoudasi@aero.tamu.edu

pseudoelasticity on vibration isolation with qualitative
experimental validation of theory have been explored.
They have observed a left shift in the response peak
towards lower frequencies due to the softening behavior
in the SMA response due to phase transformation from
A — M. In work done by Collet et al. (2001) similar
conclusions have been drawn for a SMA beam acting
as a vibration isolation device along with qualitative
experimental observation by performing dynamical test-
ing of the SMA beam.

However, the above mentioned publications have
not considered a wide range of conditions like SMA
undergoing complete phase transformation, reverse
phase transformation from M — A4 and the affect
that different system parameters like mass, initial
conditions, and amplitude of excitation have on the
dynamic response of a SMA-based vibration isolation
system. A noted exception is a recent theoretical
study by Bernardini and Vestroni (2002), where non-
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linear, dynamic nonisothermal response of pseudo-
elastic shape-memory oscillators have been presented.
Softening as well as hardening behavior is noted as the
SMA undergoes partial and full phase transformation
under varying force excitation amplitude, hysteresis
shape, and temperature. Based on the work done by
Bernardini and Vestroni (2002), Lacarbonara et al.
(2001) have studied periodic and nonperiodic thermo-
mechanical response of a shape-memory oscillator and
considered both isothermal and nonisothermal con-
ditions under forced vibration and presented a rich class
of solutions and bifurcations including jump phe-
nomena, pitch fork, period doubling, complete or
incomplete bubble structures with a variety of nonper-
iodic responses. Results presented in Lacarbona et al.
(2001) show that for the range of parameters investi-
gated, the nonisothermal and isothermal responses were
similar to each other.

Based on the work done on SMA-based dynamical
systems mentioned in the above publications, there is a
need to explore the effects of SMA pseudoelasticity on
vibration isolation by performing actual experimental
correlations and conducting parametric studies under
various dynamic loading conditions on an actual SMA-
based vibration isolation device.

In Part II of this two-part paper series the effects of
complete and partial pseudoelastic phase transforma-
tions on a SMA-based vibration isolation device are
investigated with respect to system parameters like mass,
amplitude of input excitation and initial conditions
utilizing the models developed in Part T along with
experimental correlations of actual dynamical testing
of a pseudoelastic SMA vibration isolation device.
Outline of this paper is as follows: first, description of
the vibration isolation device which consists of SMA
tubes undergoing pseudoelastic transformations under
transverse loading is presented. Actual experimental test

Rigid frame for attaching
the isolator 1o the shaker

results are also presented followed by description of a
SMA-based system model of the prototype device where
the SMA behavior is predicted by the two models
developed in Part I. Abovementioned issues are addres-
sed By presenting numerical simulations of a generic
pseudoelastic SMA spring-mass system followed by
simulations of a nonlinear hysteretic dynamical system
based on the prototype device. Finally, experimental
correlations of model predictions with the experimental
results are presented followed by concluding remarks
for the two-part paper series.

DESCRIPTION OF SMA VIBRATION ISOLATION
EXPERIMENT

For this work, an experimental device was built
to determine the effectiveness of SMAs when the
pseudoelastic response is used in a dynamic system for
passive vibration isolation. SMA tubes were chosen to
investigate the validity of SMA spring elements
as vibration isolators due to availability and ease
in manufacturing of SMA tubes. In this device, layers
of preconstrained thin-walled SMA tubes loaded in
a transverse direction in compression were used to
support the mass, which was subjected to base excita-
tions. The tubes were acquired from SMA, Inc. and were
manufactured from Nitinol with a diameter of approxi-
mately 6mm and a wall thickness of approximately
0.17mm. The tubes used in the experiment were cut to
10mm in length.

The experimental testing was conducted at the Air
Force Research Laboratory, Kirtland AFB, NM.
The shaker configuration with the SMA spring-mass
system attached is shown in Figure 1, where SMA tubes
have been shown as nonlinear springs. Figure 2 shows
the actual setup along with the prototype device.

. Figure 1. Schematic of shaker and SMA spring-mass isolation system as tested.
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Figure 2. SMA device vibration test setup.

The excitation during the testing was provided by a
VTS-100 electromagnetic shaker and accompanying
power amplifier controlled by a Hewlett-Packard
35665A Dynamic Signal Analyzer. Dynamic excitation
was measured using two PCB 336C04 accelerometers,
with one located on the shaker table and the other
located on the SMA spring-mass system. Constant
acceleration amplitude frequency sweeps were used as
the input waveform and were controlled via a feedback
loop using the accelerometer on the shaker table as the

input source. Output accejeration was also measured by -

a signal analyzer and the ratio of the magnitude of the
output to the input accelerations was processed to create
a frequency domain transfer function for the system.
Details of the experimental setup and various experi-
mental cases have been presented in detail in work done
by Mayes and Lagoudas (2001) and Mayes (2001).

The experiment was designed so that the SMA tubes
operated in pairs to provide resistance to both tension
and compression for the system as a whole while
always being under some compression on an individual
basis. The initial compression of the tubes is referred
to as the precompression and given as a percentage
of the initial undeformed diameter of the tubes. This
precompression will dictate the point about which the
tubes will operate in the transition region of their pseu-
doelastic response, and variations in the amount of
precompression will affect both the stiffness of the
system and the energy absorbed due to SMA hysteresis.
A typical force—displacement relation for the SMA tube
modeled as a SMA compression spring is shown in
Figure 3 along with the calibrated model responses. This
data represents the structural response of a SMA tube,
not the constitutive response of a SMA itself and has
been discussed in detail in Part T and reproduced in
Part II for the sake of continuity.

s S-omaovmem m————
—~— gxperiment

Spring Force (N)

-4 -3:5 4 -2:5 ; ~1J.5 1 -0:5 [}
Spring Displacement (mm)

Figure 3. Comparison of calibrated models with experimental
response of a SMA tube used in the vibration isofation device.

Table 1. Test matrix for SMA spring-mass system.

SMA Tube Loading
Tubes  Pre-comp. (g9)

Case Mass pcl pcl

No (kg) 4 6 20% 26% 14 12 34 1.
1 05 X X X X X X
2 08 X X X X X X
3 1.0 X X X X X X
4 1.2 X X X X X X
5 15 x X X X X X
6 05 X X b 4 X X X
7 0.8 X X X X X X
8 1.0 X X X X X X
9 05 X X X X

10 0.5 X X X X

During the experiments, several of the parameters
were varied to determine their effect on the behavior of
the system. The number of SMA tubes (compression
springs), the mass to be isolated and the loading input
into the system were all varied following the test matrix
presented in Table 1 to obtain a broad spectrum of
performance for the SMA-based vibration isolation
device. An important parameter of interest was deter-
mining the effect of changes in the precompression of the
SMA tubes on the dynamic response of the system.
Since the amplitude of motion for this series of tests was
relatively small compared to the amplitude equivalent tc
the undeformed diameter of the SMA tubes, the degree
of transformation was mostly influenced by the amount
of precompression placed on the tubes. After setting
the precompression, the SMA tubes would operate ir
minor loop hysteresis cycles about the preset precom:
pression point without much deviation in displacement
Naturally, had the loading amplitude been greater, thi:
would not necessarily be true, however, for this system i
was possible to manipulate the degree of transformatiot
of the SMA tubes by adjusting the precompression
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As noted in Table 1, two different amounts of precom-

pression were tested, 20% and 26% reduction in length’

compared to the original undeformed diameter. These
two levels of precompression are here-after referred to as
“pec I and *pc 11 precompression, respectively. Testing
of Cases 1-7 were all performed at “pc I precompres-
sion levels. Cases 8 and 9 were performed at “pc II"™
precompression levels and the results of this series of
tests were then compared to the corresponding results
from Cases 4 and 7.

Eiperimental Results

 Results from this series of experiments are shown
_in Figures 4-9. Figures 4-6 show the results for two

20 T T
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pairs of SMA t\jbes, or four total, and Figures 7-9 show
the results for three pairs of SMA tubes, or six total.

EFFECT OF CHANGES IN LOADING ON SYSTEM
RESPONSE

For Figures 4-6, where four SMA tubes were used,
the mass is increased for each successive figure and the
increase in mass results in a lower resonance frequency,
similar in magnitude to the decrease in resonant
frequency expected from a linear analysis. However,
for a constant mass, there is an additional decrease
in resonant frequency as the loading on the system
increases. This reduction in frequency can be as much
as 25% (Figure 6) but is usually in the range of

' .5-10% (Figures 4 and 5). Accompanying the reduction
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in resonant frequency, there is also a consistent
reduction in the magnitude of the resonant peak on
the order of 30% (Figures 4-6). These reductions are
a result of the nonlinear, hysteretic behavior of the
SMA tubes and would not be seen in a similar linear
system.

The same trends as discussed above are seen in
Figures 7-9 for the experimental system with six SMA
tubes. Again there is the expected decrease in resonant
frequency for increasing mass. Similar to the results
from the system using four tubes. there is also a
reduction in resonant frequency as the loading applied
to the system increases. From Figures 7-9 it can be
seen that this reduction in resonant frequency is also of
the order of 5-10%. .t}ccompanying this reduction in

resonant frequency is a reduction in the resonant
amplitude as seen before. For Figure 9, this reduction
is approximately 10%, however, for Figures 7 and 8
the reduction in resonant amplitude is much greater, of
the order of 30-35%.

EFFECT OF CHANGES IN TUBE :
PRECOMPRESSION ON SYSTEM RESPONSE
Referring to Figure 3. it is evident that changes in
tube displacement will result in changes in the stiffness
of the tube. However, given the nonlinear, hysteretic
behavior of the pseudoelastic response of SMAs it was
unclear what effect this would have on the response
of the system. Therefore, experiments were conducted
in which the precompression of the SMA tubes was
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Figure 8. Transmissibility for Case 7.
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Figure 9. Transmissibility for Case 8.

changed while all other system parameters were held
constant. The results of these tests are presented
in Figures 10-13. Figures 10 and 11 show the effect of
higher precompression for a four-tube system under
1/4g and 1/2g loading conditions, respectively. As
shown, increasing the precompression results in an
increase of resonmant frequency by approximately
10-12%. Figures 12 and 13 show the similar results
for a six-tube system under the same loading conditions.
However, for this case the increase in resonant
frequency is approximately 3540% for the same
increase in precompression. As shown, the effect of
increasing the precompression was to increase the
system stiffness for all cases, with a substantially larger
effect seen in the six-tube system as compared to the

four tube-system due to the additional stiffness provided
by the increased number of tubes. Further experiments
need to be performed, however it is expected that
increases in the precompression up to approximately
50% will result in similar responses with increases above
50% resulting in a much stiffer system.

SMA VIBRATION ISOLATION SYSTEM
DESCRIPTION o

Motivated by the need to model the SMA-based
isolation device (Mayes and Lagoudas, 2001) presented
in the last section, the simplified SMA model and the
Preisach model (Part I) are utilized to solve a single

B e )

[URUE————
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Figure 11. Transmissibility for Cases 7 (solid line) and 8 (dashed line).

degree of freedom (SDOF) SMA spring-mass system
(Lagoudas et al, 2002). To determine the effect
of pseudoelastic SMA tubes on the response of the
SMA-based vibration isolation system, the SMA tubes
are modeled as nonlinear, hysteretic springs and are
addressed as SMA springs in this two-part paper. Based
on the prototype device shown in Figure 2, a schematic
of the pseudoelastic SMA spring-mass system along
with a free-body diagram of the mass being isolated is
shown in Figure 14.

The system is excited by the motion of the supporting
structure, denoted by ( v) (base displacement). (m) is the
mass to be isolated and (x) represents mass displace-
ment. (§,) and (8)) represent displacement of the springs
above and below the mass (/). The subscripts («) and (/)

represent “‘upper” and “lower” springs. Figure 14(b)
shows the free body diagram of the SMA spring-mass
system, where (f$MA) and (fSMA) represent force exerted
by the upper and lower springs respectively. Note that
for a configuration shown in Figure 14 with linear
springs instead of SMA springs, all the springs would be
modeled as springs in parallel and the spring force
acting on mass (m) would be modeled as a single force.
However, since SMA force response is displacement
history dependent i.e., force exerted by a SMA is a
“functional” of its displacement history, and is expressed
as (fSMA = fSMA(g])) Therefore, for the given confi-
guration. forces exerted by the SMA springs above
the mass would be different from the forces exerted
by the SMA springs below the mass as the springs
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above and below the mass would have different
displacement histories due to the nonlinear hysteretic
response of SMAs along with the different degree of
pre-compressions as the device is assembled. From the
free body diagram in Figure 14(b), the equation of
motion or the conservation of linear momentum for the
mass (m) can be determined as shown in Equation 1. (£3]
is the acceleration of the isolated mass and (¥,) and (N))
refer to the number of springs on the upper or lower
sides of the mass, respectively.

The forces exerted by the SMA springs not only
account for the change in stiffness but also the damping
introduced .in the system due to pseudoelastic phase
transformations. Force exerted by the upper springs

Figu

isolation system; (b) free bo
spring-mass isolation system.

'51{

Mass

;
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te TEEE
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re 14. (a) Schematic of pseudoelastic SMA spring-mass
dy diagram of pseudoelastic SMA
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(f$MA) and lower springs (f;S™A) are determined by
using the models developed in Part I and as mentioned
above, these forces are dependent on the displacement of
the springs, (3,) and (&1), and the displacement history of
the springs as discussed previously. These displacements
are related to (x) and (y) as shown in Equation (2).

mi = N, fSMA[S,] — N fSMA[5)] ¢))
=—dy=x-y : 2)

Note that no viscous damping term also known as
internal damping term has been included in Equation (1)
as only damping due to hysteresis caused by SMA phase
transformations is being investigated as the SMA tubes
are always under a certain degree of precompression,
i:e. the SMA tubes are operating in the middle of
their phase transformation region as mentioned in the
previous section. Based on the experimental setup and
as mentioned above, same displacement and displace-
ment histories have been ‘considered for all the springs
above the mass in Equation (1). The same has been
considered for all the springs below the mass as shown
in Equation (1) and any discrepancies in displacement
and displacement histories of individual springs due to
failure in maintaining appropriate tolerances during
manufacturing have not been modeled.

Another important consideration is the effect of
latent heat during the SMA exothermic (4 — M) and
endothermic (M — A) phase transformations. The heat
released and absorbed to and from the environment
during these phase transformations causes a change
in the SMA temperature which leads to a change in
the SMA constitutive response. Under isothermal
conditions SMA pseudoelastic response is not affected
by the change in SMA temperature due to latent heat,
as the increase or decrease in temperature stabilizes
with respect to the ambient temperature. However, for
nonisothermal conditions SMA response is affected
by the change in SMA temperature caused due to heat
released and absorbed during phase transformations
due to insufficient heat transfer between the SMA
and the ambient environment. This results in a change in
the SMA temperature. The SMA models were calibrated
at the SMA tube response at room temperature
(Figure 3). And as mentioned in Part I of this study,
small changes in the shape of the SMA tube hysteresis
were observed while testing the tube at temperatures
ranging from 25 to 65°C with different cross-head
displacement loading rates ranging from 0.016 to
0.3mm/s. The tube response showed maximum 5% of
increased hardening at higher testing temperatures and
all loading rates as higher stresses are required to induce
phase transformations (Figure 1, Part I). The small
change in the force-displacement curves for different

temperatures was attributed to the fact that only small
parts of the SMA tube were undergoing phase
transformation as discussed in Part I.

Based on the experiments and the FEA results (Part I),
the authors have concluded that even though locally
the increase or decrease in the SMA tube temperature
due to latent heat of phase transformation may be
significant especially under dynamic loading conditions,
the overall structural response is not drastically affected.
This is justified because heat conduction and heat
convection to and from the tube will cause the tube to
reach a steady state temperature close to the ambient
environment at steady state dynamic response. And, as
it will be shown later in this paper, for a given input
excitation loading, as frequency increases the amount
of SMA tube undergoing phase transformation
decreases. Hence, temperature effects were assumed
to be negligible for the SMA tubes used in this work and
the tube response was modeled without considering
release and absorption of latent heat during the SMA
pseudoelastic deformations.

Excitation of the ‘system is introduced through
sinusoidal motion of the base of the device whose
magnitude is determined by the desired loading to be
placed on the structure for a given frequency sweep as
mentioned in the previous section. Loading magnitude,
(@) (Input loading level) is specified as a fraction of the
acceleration due to gravity, (g). Loading frequency is
specified in cycles per second, denoted as (f) (Excitation
frequency). The acceleration due to gravity is taken as
9.81 m/s?>. The magnitude of displacement (Y), neces-
sary to achieve a required ‘acceleration at a given
frequency is determined by the relationship shown in
Equation (3), given that the motion is sinusoidal and
periodic. Equation 4 gives an expression for a sinusoidal
displacement input.

y =28
@nf)

y = YsinQnf) @)

)

The transmissibility, TR, (Transmissibility) of the system.
is a measure of the force or motion transmitted through
the system. Displacement transmissibility has been
considered for the analysis that is shown mathematically
in Equation (5). -

TR= (3)
[»]

(6)

With the response of the SMA springs defined, it is
now possible to model the system as depicted in
Figure 14 and described by Equation (1). The simulation
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of the dynamic system was at first implemented in a
MATLAB (The Mathworks Incorporated, 1999) environ-
ment and later on converted to a C/C++ environment
to develop an efficient simulation tool. Time history
response of the system was calculated using a Newmark
integration scheme (Newmark, 1959) with time step and
weighting factors determined to ensure stability of both
the integration scheme, the simplified SMA model and
the modified Preisach model describing the SMA spring
element behavior. The reader is referred to Lagoudas
et al. (2001) for details on verification of the Newmark
Scheme. For the sake of completeness only a brief
description is presented below. :

The time integration is done by the constant-average
acceleration method, a variant of the Newmark scheme.
For t=t, the Newmark scheme is defined by:

S | " v
Xnil = Xn + Aty + E(At)z((l — V) + Vinr) (D)

Xnp1 = Jn + AH(1 — )%y + @Xn11) @)

The constant-average acceleration method (trapezoi-
dal rule) is obtained for & = 1/2, y = 1/2. The selection
of this second-order implicit method was governed by
the highly nonlinear nature of the differential equation
describing the system. For a linear system, this scheme
conserves the total energy of the system, allowing the
high-frequency response to be simulated without any
numerical damping, and is unconditionally stable. The
same scheme is used to solve the nonlinear, hysteretic
SMA spring-mass system based on the understanding
that unconditional stability holds for certain nonlinear
systems. However, no proof aof stability of the integra-
tion scheme for this type of nonlinear systems is

available. For a detailed discussion on time-integration
schemes, the reader is referred to Hughes (1987).

PARAMETRIC STUDY AND SYSTEM
SIMULATION

Single Pseudoelastic SMA Spring-mass System using the
Physically Based Simplified SMA Model

To qualitatively identify the effects of material soft-

_ening, precompression and hysteresis on SMA-based

vibration isolation, a single pseudoelastic SMA spring-

-mass system has been investigated as a first step toward

performing simulations of the system given by the
schematic in Figure 14. Only the simplified SMA model
has been used for this qualitative parametric study.
Schematic of a basic SMA spring-mass system is given
in Figure 15. For a fixed excitation of a=0.25, with only
one single spring (N,=1 and N;=0 in Equation (1)),
Figure 16 shows effects of varying mass on the
transmissibility of a simple SMA spring-mass system.
Not only does the natural frequency of the system
decrease as the mass increases, but the transmissibility of
the system also reduces. Reduction in transmissibility is

Figure 15. Schematic of a simple pseudoelastic SMA spring-mass
system.
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Figure 16. Effects of varying mass on transmissibility.
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Figure 18. Force-displacement response for 2 kg mass with 0.25g
excitation.

attributed to the relative increase in spring displacement
with increasing mass, causing phase transformation
along with the hysteresis. Figures 17-20 shows force-
displacement diagrams of the spring for mass values of
1, 2, 3 and 8 kg at their respective resonance conditions.
Increase in mass after inducing full phase transforma-
tion does not yield a significant decrease in transmissi-
bility (see Figures 16 and 20) as the spring starts
behaving like a trilinear spring, along with the hysteresis
effect. an important thing to note is that increasing the
mass any higher after undergoing full phase transforma-
tion minimizes the effect of the hysteresis and the
reduction in transmissibility is relatively small.

Effects of varying excitation on transmissibility for
mass of 1, 2 and 3 kg are given in Figures 21-23. For all
the three masses, at lower excitations the natural
frequency does not shift as the spring loads and unloads

3 A

2 -1.5 -1 0.5 0 0.5 1 1:5 2
Displacement (mm)

Figure 19, Force-displacement response for 3 kg mass with 0.25¢g
excitation.
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Figure 20. Force—displacement response for 8 kg mass with 0.25¢g
excitation.

with a stiffness very close to the stiffness of the austenitic
phase due to small phase transformation, however a
reduction in transmissibility is observed because of the
hysteresis.

An increase in excitation increases the relative

‘displacement of the spring causing greater phase

transformation. Higher phase transformation magnifies
the softening behavior of the SMA, this results
in lower natural frequency of the system. However.
further increase in excitation results in complete phase
transformation into the martensitic region. Since the
stiffness of this spring is much higher in the martensitic
phase the natural frequency of the system starts
to increase. An important observation has been the
discontinuous nature of the transmissibility curves foi
the single spring system, which occurs when the sprins
starts phase transformation from the martensitic phase
into the austenitic phase or vice versa causing a sudder
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Figure 21. Effects of varying excitation on transmissibility for 1kg mass.
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Figure 22. Effects of varying excitation on transmissibillty for 2 kg mass.

change in stiffness. The sudden change in stiffness upon
loading or unloading which is observed at the onset of
the hysteretic response as shown in Figures 24 and 25
(unloading case) gives a lower transmissibility. The
discontinuous nature of the transmissibility curves for a
spring exhibiting hardening or softening nonlinearity
similar to the pseudoelastic SMA response undergoing
M — A and 4 — M phase transformations is referred
in the literature as the jump phenomenon (Meriovitch,
1975; Nayfeh and Mook, 1979). These significant jumps

are attributed to the multivaluedness of the response

* curves, which are due to the spring nonlinearity and

have been observed experimentally (Collet et al,, 2001}.
The reader is referred to expositions on the jump
phenomenon for nonlinear springs in Nayfeh and Mook
(1979) for further explanations. For the model presented
in this work (Part I) representing pseudoelastic SMA
phase transformations with sudden change in stiffness,
namely the simplified model and its correlation with

" the mechanism-based hysteretic nonlinear response, the
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Figure 23. Effects of varying excitation on transmissibility for 3 kg mass.
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Figure 24. Force-displacement response for 1 kg mass with 1.5¢g
excitation.

jump phenomenon is observed while undergoing a
change in stiffness from K, to K,y or Kr, Kp to
Ku—.q40t Kp, Kpg— 4 10 Ky, Ky a1 to Kag, Kr to Kuy and
KR to KA.

Force-displacement response of the SMA spring for a
1 kg mass is shown in Figures 24 and 25 at resonance
under different excitation levels to further validate the
arguments given earlier on the effects of excitation on
transmissibility. Figure 26 shows the variation of
natural frequency with respect to excitation for different
masses. Figure 27 shows the variation of natural
frequency with respect to mass for different excitation
levels. Higher natural frequencies meaning a stiffer

&

] m 2 6 . 2 4 ' 8
Displacement (mm)

Figure 25, Force-displacement response for 1kg mass with 3.0g
excitation.

response is observed at higher excitation due to
complete phase transformation. A softer response is
observed for partial phase transformations, whereas
very low phase transformations due to low excitations
give a response similar to linear spring having a stiffness
close to the initial stiffness at small displacements.

Muitiple Pseudoelastic SMA Spring-mass System Based
on the Prototype Device using Physically Based
Simplified SMA Model

Based on the schematic of the actual prototype device
shown in Figure 14, Figure 28 shows the effect of
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varying the amplitude of base excitation on transmissi-
bility of the SMA spring-mass system. These results are
shown for a mass of 1kg, a SMA spring configuration
of two upper SMA springs and two lower SMA springs,
and a precompression of Imm for all the springs.
At lower amplitude of base excitation, the SMA
spring-mass system exhibits resonance at a frequency
of approximately 66 Hz, similar to the transmissibility
of a linear system which is shown in Figure 28 by the
line labeled “analytical”. This can be explained by

.

looking at the force—displacement diagram for one of the
SMA springs, as shown in Figure 29. For an excitation
amplitude of 0.1 g, it is observed that after a few loading
cycles, the SMA spring repcatedly loads and unloads
along a path having a stiffness of approximately
43kN/m, giving a combined total stiffness of approxi-
mately 172kN/m. For a mass of 1kg, this equates
to a natural frequency of approximately 66 Hz. As the
excitation amplitude increases, the decrease in stiffness
and hysteresis of the SMA’'s pseudoelasticity begin




Pseudoelastic SM 4 Spring Elements: Part I 457

100 150

Frequency (Hz)
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Figure 29. Force-displacement response for a SMA spring for the system with 1kg mass and 0.1 g excitation amplitude.

to contribute to a reduction in the resonant amplitude
of the system. Figure 30 gives the force-displacement
history for an excitation amplitude equal to 0.5g at
the natural frequency. A wider hysteresis loop is
observed due to increased phase transformation,
which is a result of higher excitation amplitude, and
results in a lower transmissibility (see Figure 28). Figure
31, with a 2.0g excitation amplitude. shows an even
wider hysteresis which again results in a lower transmis-
sibility.

Figure 32 shows the system response (displacement
history) for 0.1 g excitation amplitude at resonance and
is similar to the response of a linear spring due to the

lack of phase transformation, which results in a linear
force-displacement relationship. At frequencies greater
than resonance frequencies, the system dynamics allow
for significant reductions in transmissibility, as shown in
Figure 33. ‘

From these results, it can be surmised that the greatest
benefit of SMA pseudoelasticity can be gained for this
system under higher loading levels and near the resonant
frequency of the system. It is also important to
understand that in order to have vibration isolation
with SMA springs, the SMA springs should undergo
large amplitude displacement that will result in phase
transformation. This will allow the system to operate
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Figure 31. Force-displacement response for a SMA spring for the system with 1 kg mass and 2.0g excitation amplitude.

with a lowered effective spring stiffness, due to tﬁe
pseudoelastic effect, and will allow the inherent hyster-

esis present in the SMAs to provide energy dissipation.-

In other words, SMA force—displacement response
should be as close as possible to the major loop
behavior discussed earlier in order to have the most
effective vibration isolation. The following results will
further explore the effect of excitation amplitude, system
mass, and spring configuration on system response and
transmissibility.

Figure 34 shows the effect of increasing mass on
transmissibility. Increasing the mass reduces the
resonant frequency of the system and it increases
the amount of phase transformation as the SMA springs
are subjected to higher loads for the same amount
of relative displacement. This is demonstrated by the
similarity between the force-displacement response

for a SMA spring for a system with 3kg mass and
0.5 g base excitation shown in Figure 35 and the force-
displacement of the 1kg mass system with 2.0g exci-
tation shown previously in Figure 31.

The effect of changes in the spring configuration is
illustrated in Figure 36, resulting in a predictably lower
resonance frequency for the system with fewer springs
due to the lower overall stiffness. It should be noted that
for all of these cases, only a relatively small amount of
pseudoelasticity is observed, especially when compared
to the complete major loop response. For comparison,
the major loop force—displacement relationship and the
force-displacement histories shown in Figures 29 and 31
are plotted together in Figure 37. It is evident that
greater benefit could be gained from the pseudoelastic
effect if larger portions of the force—dxsplacement
relationship could be exploited.

e ———————— o
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Figure 32. System response at resonance for 1kg mass and 0.1g excitation.
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Figure 33. System response for 1kg mass, 4 springs, 1.0g excitation amplitude showing reduction in transmissibility utilizing SMAs (125 Hz).

Multiple Pseudoelastic SMA Spring-mass System Based
on the Prototype Device using the Preisach model

Figure 38 shows the effect of varying the amplitude of
base excitation on transmissibility of the SMA spring-
mass system using the Preisach model. These results are
shown for the same mass, SMA spring configuration
and precompression as discussed in the previous section
and shown in Figure 14. At lower amplitude of
base excitation, the SMA spring-mass system exhibits
resonance at a frequency of approximately 48 Hz,
similar to the transmissibility of a linear system which

is shown in Figure 38 by the line labeled “‘analytical”.
This can be explained by looking at the force—displace-
ment diagram for one of the SMA springs, as shown in
Figure 39. For an excitation amplitude of 0.1g, it is
observed that after a few loading cycles the SMA spring
repeatedly loads and unloads along a path having a
stiffness of approximately 23 kN/m., giving a combined
total stiffness of approximately 92kN/m. For a mass of
1 kg, this equates to a natural frequency of approxi-
mately 48 Hz. As the excitation amplitude increases,
the decrease in stiffness and hysteresis of the SMA’s
pseudoelasticity begin to contribute to a reduction in
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Figure 35. Force-displacement response for a SMA spring for the
system with 3kg mass and 0.5¢ excitation amplitude.

the resonant amplitude of the system. The difference
in the natural frequency for the given system solved
by using the simplified model and the Preisach model
is due to the differences in predicting the SMA tube
response by both the models. These differences have
been addressed in the next section.

Figure 40 gives the force-displacement history for an
excitation amplitude equal to 0.5g at the natural
frequency. A wider hysteresis loop is observed due to
increased phase transformation, which is a resuit of
higher excitation amplitude, and results in a lower
transmissibility (see Figure 38).

Figure 41 shows the system response (displacement
history) for 0.1 g excitation amplitude at resonance and
is similar to the response of a linear spring due to the

lack of phase transformation, which results in a linear

force—displacement relationship. At frequencies greater .

than resonance frequencies, the system dynamics allow
for significant reductions in transmissibility, as shown in_
Figure 42. From these results and the results presented
in the previous section, it can be seen that the greatest
benefit of SMA pseudoelasticity can be gained for this
system under higher loading levels and near the resonant
frequency of the system. It is also important to
understand that in order to have vibration isolation
with SMA springs, the SMA springs should undergo
large amplitude displacement that will result in phase
transformation. This will allow the system to operate
with a lowered effective spring stiffness, due to the
pseudoelastic effect, and will allow the inherent hyster-
esis present in the SMAs to provide energy dissipation.
The SMA force—displacement response should be as
close as possible to the major loop behavior as discussed
earlier in order to have the most effective vibration
isolation. .

Effect of increasing mass on transmissibility using
the Preisach model are the same as in the case of the
simplified model. Increasing the mass reduces the
resonant frequency of the system and it increases
the amount of phase transformation as the SMA springs
are subjected to higher loads for the same amount
of relative displacement. The effect of changes in the
spring configuration results in a predictably lower
resonance frequency for the system with fewer springs
due to the lower overall stiffness. Illustrations on effects
of changing mass and spring configurations on system
transmissibility, using the Preisach model show the same
trend as shown in the case of using the simplified model
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Figure 37. Comparison of major loop hysteresis to minor loop hysteresis induced by system motion for several cases.

and have been omitted to avoid repetition. It should be
noted that, as in the case of simplified model, for all
of these cases using the Preisach model, only a relatively
small amount of pseudoelasticity is observed, especially
when compared to the complete major loop response.
For comparison, the major loop force-displacement
relationship and the force-displacement histories shown
in Figures 39 and 40 are plotted together in Figure 43.
It is evident that greater benefit could be gained from

the pseudoelastic effect if larger portions of the force-
displacement relationship could be exploited.

Multiple Pseudoelastic SMA Spring-mass System Based
on Prototype Device using the Preisach Model Identified

from Simplified Model

The difference in the natural frequency for the given
system solved by using the simplified model and the
Preisach model is due to the differences in predicting
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Figure 38. Transmissibilily of SMA spring-mass system with different amplitude of base excitation for 1 kg mass.
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Figure 39. Force—displacement response for a SMA spring for the
system with 1kg mass and 0.1 g excitation amplitude.

the SMA tube response by both the models. These
differences are apparent while predicting the major loop
and especially in the minor loop response of the SMA
tubes. Figures 26 (Part I), 3 and Figures 16 (Part I) show
the calibrated simplified model and the Preisach model
along with the minor loop behavior. It is important
to note that for partial phase transformations modeled
using the simplified model, the SMA spring elements
load and unload along a stiffness which is calculated
using a rule of mixtures on the compliance (see Part D),
hence the minor loop stiffness varies linearly between
the stiffness of austenite and martensite phases. Where
as, in the case of the Preisach model, the spring elements
load and unload along a stiffness given by the actual

38 s . . N . . . N R
15 -14 13 12 11 -t 09 -08 07 -06 -05
Spring Displacemenrt, § (mm)

Figure 40. Force-displacement response for a SMA spring for the
system with 1kg mass and 0.5¢g excitation amplitude.

experimental response of the tubes (see Part I) which
is closer to the major loop stiffness during transforma-
tion and less stiffer than the minor loop stiffness given
by the simplified model. The softer response given by
the: Preisach model results in having a lower natural
frequency for the system solved in the previous two
sections. o

To validate the above observation, the Preisach model
identified from the simplified model and discussed in
Part I has been used to solve the same system as
discussed in the previous two subsections. Figure 44
shows the effect of varying the amplitude of base
excitation on transmissibility of the SMA spring-mass
system. At lower amplitude of base excitation, the SMA
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Figure 42. System response for 1kg mass, 4 springs, 1.0g excitation amplitude showing reduction in transmissibilily utilizing SMAs (100Hz).

spring-mass system exhibits resonance at a frequency
of approximately 64 Hz, which is almost identical to
the resonance frequency given by using the simplified
model. Similar behavior is seen while -observing
the force-displacement diagrams for one of the SMA
spring elements. For an excitation amplitude of 0.1 g
(Figure 45), it is observed that after a few loading
cycles the SMA spring repeatedly loads and unloads
along a path having a stiffness of approximately
42kN/m, giving a combined total stiffness of approxi-
mately 168kN/m. For a mass of 1kg. this equates
to a natural frequency of approximately 64 Hz which is
very close to the natural frequency given by the simpli-
fied model.

As the excitation amplitude increases, the decrease in
stiffness and hysteresis of the SMA'’s pseudoelasticity
begin to contribute to a reduction in the resonant
amplitude of the system. Figure 46 gives the force-
displacement history for an excitation amplitude equal to

0.5 g at the natural frequency. A wider hysteresis loop is

observed due to increased phase transformation, which
is a result of higher excitation amplitude, and results
in a lower transmissibility. (see Figure 44). Figure 47.
with a 2.0 g excitation amplitude, shows an even wider
hysteresis which again results in a lower transmissibility.

The results obtained using the Preisach model identi-
fied from the simplified model validates the above
observations regarding the differences in predicting
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SMA spring element response using the simplified and
the Preisach model identified from actual experimental
data.

The following section compares the actual experi-
mental results for the SMA-based passive vibration
isolation device along with its numerical simula-
tions using the simplified and the Preisach model
and discusses the possible sources of errors and
discrepancies.

COMPARISON OF SIMPLIFIED MODEL
AND PREISACH MODEL PREDICTIONS
WITH ACTUAL EXPERIMENTAL RESULTS

In order to perform correlations between the experi-
mental results and their numerical simulations using
the two models, a representative number of cases were
simulated and compared (Lagoudas et al., 2002). Table 1
shows a tabulation of different experimental cases along
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Figure 46. Force-displacement response for a SMA spring for the
system with 1kg mass and 0.5 g excitation amplitude.

with variation of parameters effecting the system beha-
vior. Number of compression springs (tubes), amount of
precompression as percentage of tube diameter (as the
tubes were loaded in a transverse direction), isolation
mass, and amplitude of base excitation were the
considered parameters during the dynamical testing of
the vibration isolation device (Mayes, 2001; Mayes and
Lagoudas, 2001).

Cases 2, 7-10 were considered for correlation of
experimental results with the simplified and Preisach
models based numerical simulations of the system.
These cases were chosen as they represented the
spectrum of experiments that were conducted and
correlations obtained from these cases can be used to
generalize important results for future work involving
SMA-based passive isolation devices.

The results presented below show that there is
significant agreement between the experimental cases
and the numerical simulations and the effect of the
precompression is shown to drastically affect the res-
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Figure 47. Force-displacement response for a SMA spring for the
system with 1 kg mass and 2.0g excitation amplitude.
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Figure 48. Magnification of base plate groove along with a tube.

ponse of the system. The experimental results presented
in Mayes and Lagoudas (2001) and Mayes (2001) have
also shown that the precompression can greatly shift the
resonant frequency of the system. Experimental results
of Cases 1 and 9 and Cases 6 and 10 show the effect ol
varying precompression on the system behavior
Inadequacies in the experimental design preventec
absolute certainty as to the amount of precompressior
and although every effort was made to ensure the
correct amount of precompression had been appliec
to the system, it is evident that even the slightest changt
in the precompression will alter the system respons:
greatly. An important factor in these uncertainties wa.
that the experiment was reassembled during variou
cases and as a result the same level of precompressio
was not achieved for all of the cases.

In comparing experimental and theoretical results
it was found that a correlation could be made if th
precompression value given to the numerical simulatiol
using -the simplified model was set equal to approxi
mately 2.3 mm, or roughly 37.5% of the total transvers
displacement of the tube diameter. However, in th
case of the Preisach model, a better correlation could b
made when the precompression was set equal to 2.5mr
for low precompression cases and about 3.0 mm for th



high precompression cases. These factors were found
consistent over all the simulated cases for the respective
models. For all the cases, the precompression had to be
increased for both the models, leading to the under-
standing that the over all- structural response of the
experiment was much stiffer than expected. The amount
of precompression increased using the Preisach model
was even more compared to the simplified model due
to the difference in predicting minor loop behavior by
both of these models which has been discussed in detail
in Khan (2002).
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Possible explanation for having a consistent factor for
the precompression can be attributed to the groove
dimensions in the experimental setup shown in Figure 1.
A magnification of the grooves cut into the base plate
along with a tube is shown in Figure 48. The width
of these grooves were less than half the circumference
of the tubes, which caused local stiffening of tubes while
undergoing deformations during loading/unloading and
hence increased the overall stiffness of the structure.
This local stiffening was consistently observed during
the experiment but is not accounted for in the modeling -
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Figure 49. Comparison of numerical simulation with experimental results for cases 9 and 10.
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Figure 52. Comparison of numerical simulation with experimental results for case 7 with 0.25g excitation amplitude.

of the experiment. Response of other components like
mounts and bolts used for the experimental setup having
relatively higher stiffness’ were also not modeled.
Presented in Figures 49-55 are the results of the
numerical simulation for Cases 9 and 10 and Cases 2. 7,
and 8. along with the experimental results for the
respective case. For all cases, the resonant amplitude of
the experimental data is less than that for the numerical
simulation using the simplified model. However, this is
not true in the case of the Preisach model simulations.

Additionally, for every case there is a good correlation
between the resonant frequency predicted by the simula-
tion and the resonant frequency measured during
the experiment. For Figure 49, the effect of changes in
precompression are seen to. have dramatic effect in both
the experiment and the numerical simulation. For
both the experimental data and the simulation results.
relatively small increases in the precompression are
shown to increase the resonant frequency greatly. This
i an important result as it shows that SMA-based
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Figure 53. Comparison of numerical simulation with experimental results for case 7 with 0.5 g excitation amplitude.
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Figure 54. Comparison of numerical simulation with experimental results for case 8 with 0.25 g excitation ampiitude.

isolation devices lend themselves well to being develo- mation from degrading the performance of the isolator.
ped as tuneable isolation devices capable of providing Finally, the same trends of decreasing resonant ampli-
isolation for various conditions and loads. tude for increasing loading are seen in both the

At frequencies much greater than the resonant simulation data and the experimental data. This is
frequency, the modeled and experimentally obtained promising even though the magnitudes of the reductions
values for transmissibility agree very well From are not in agreement since simulation of this region
simulation in this region, it seems that the SMA indicates that the reduction in amplitude is due to larger
tubes are functioning as linear springs, that is without deformations of the SMA tubes, meaning increase in
transformation. This should prove beneficial as it would hysteresis, which results in more energy being absorbed

prevent the inherent damping present during transfor- by the isolation device. Combined with the observations
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Figure 58. Comparison of numerical simulation with experimental results for case 8 with 0.5g excitation amplitude.

of nearly linear behavior at frequencies much greater
than the resonant frequency, this observation is very
important because it indicates that the SMA isolation
device will be capable of providing sufficient damping at
resonance where high damping is beneficial and minimal
damping at higher frequencies where damping degrades
isolation performance.

CONCLUSIONS* :

In this two-part paper series, a computationally
efficient simplified SMA model and an equally efficient
Preisach model for force-displacement response of
pseudoelastic SMA tubes (modeled as nonlinear hyste-
retic spring elements) have been developed (Part I).
These models have been utilized in Part II of this work
to numerically simulate the response of a SDOF
dynamic system having pseudoelastic SMA spring
elements for damping and vibration isolation.
A computationally efficient numerical simulation tool
has been developed for the purpose of performing
extensive parametric studies for design of a SDOF
SMA-based vibration isolation system. Simulation
results have shown that damping and vibration isolation
was greatly dependent on the relative displacement of
SMA spring elements, as the relative displacement
directly affected the extent of phase transformation of
the pseudoelastic SMA springs. Variable damping and
tunable isolation response have been shown as major
benefits of SMA pseudoelasticity and it has been shown
that variable damping and tunable vibration isolation

response can be achieved based on a combination of
different system parameters like excitation level, mass
and precompression of pseudoelastic SMA spring
elements. A significant conclusion of this study has
been that SMA-based damping and vibration isolation
devices have the potential to overcome performance
trade-offs inherent in typical softening spring-damper
vibration isolation systems.

In addition to the theoretical work presented here,
a significant experimental effort has also been perfor-
med to expand the understanding and knowledge
of dynamical systems based on SMAs. This effort
included the design and testing of a novel prototype
SMA-based isolation device using SMA pseudoelastic
tubes as isolators. Numerous tests were conducted to
explore the response of the vibration isolation device.
The developed models have also been used to simulate
the response of the prototype device. Both models have
shown good compatibility with the experimental results.
The Preisach model gave relatively accurate results due
to close proximity in modeling actual SMA tube
behavior. However, for a qualitative parametric study,
the simplified model was found to be more useful as
it was motivated from the constitutive response of
SMAs and hence. could easily incorporate different
changes in the nonlinear hysteretic structural response
of SMAs. Based on the work presented here, especially
on the outcome of the numerical studies and the
experimental correlations. it appears that SMAs could
be used successfully in damping and passive vibration
isolation devices.
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NOMENCLATURE

« =integration weighting factor
% = acceleration of mass
X, =acceleration at timestep n
X4 =acceleration at timestep n+ 1
At =time increment
3 = spring displacement
51 =displacement of springs below the mass
5, =displacement of springs above the mass
X = velocity at timestep n
Xn41 = velocity at timestep n+ 1
y =integration weighting factor
A = austenite phase
a =input loading level
f=excitation frequency
fSMA _ force exerted by SMA spring
fSMA = force exerted by springs below the mass
fSMA — force exerted by springs above the mass
f» =natural frequency of the system
g =acceleration due to gravity
K, =stiffness of austenite phase
K= stiffness of martensite phase
M = martensite phase
m=mass to be isolated
N, =number of springs below mass
N, =Number of springs above mass
t=time
TR =transmissibility
t, =timestep n
x =displacement of mass
X, =position at timestep n
Xn4+1 = position at timestep n+ 1
Y =magnitude of displacement
y =base displacement
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